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Introduction
Constitutive framework

Influence of the dislocation densities on elasto-plastic behaviour

We describe the behaviour of the elasto-plastic material:
1 Based on the existence of configurations with torsion

(∃)Kt ≡ K config. with torsion ⇐⇒

(Fp,
(p)

Γ k) plastic distorsion and plastic connection with torsion

2 Lattice defects consist of dislocations, described by the scalar
density of dislocations �dK

3 Free energy density function is postulated to be dependent on
the scalar density of dislocations and of its gradient in K

 =  K(Ce ,
(e)

AK, (Fp)−1,
(p)

AK, �dK,∇K�dK) (1)

as a function dependent on

the second order elastic deformation (Ce ,
(e)

AK)

the plastic measure of deformation ((Fp)−1,
(p)

AK)

the scalar density of dislocation �dK and its gradient
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Imbalanced free energy

Ax. The virtual internal power in K

virt(Pint)K =
1

�
(T + T∗) ⋅ L̃e +

1

�K
�K ⋅ virtℒLp [

(e)

AK]+

+
1

�K
Υp
K ⋅ L̃

p +
1

�K
�p
K ⋅ ∇KL̃p +

1

�K
Υ�
K ⋅ (�Λ)+

+
1

�K
Υd
K ⋅ ��dK +

1

�K
�dK ⋅ ∇K��dK.

Ax. The elasto-plastic behavior of the material is restricted to
satisfy in K the imbalanced free energy condition

− ̇K + (Pint)K ≥ 0 for any virtual (isothermic) processes. (2)
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Micro stress and stress momentum

obey the balance equations for micro forces:

Υp
K = div (�p

K − �K) + �̃Bp
m, in K(P, t), plastic micro forces

Υd
K = divK �d

K + �̃Bd
m, associated with the scalar dislocations

(3)

satisfy the viscoplastic type constitutive equations
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Thermomechanics restrictions

are derived from the energy imbalance:

Elastic type constitutive equations

Evolution equations for Kt− have to be compatible with the
dissipation inequlity.
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The paper deals with a special case of elasto-plastic models
within the crystal plasticity framework, i.e. no gradient of
plastic distorsion is involved.

The behaviour of the material is linear elastic with respect to
plastically deformed configuration, without macro stress
momnetum.

The complet set of evolution equations has been derived,
following Bortoloni and Cermelli (2004).

The initial and boundary value problem for elasto-vascoplastic
model with non-local equation for the scaler dislocation
densities has been derived.

As applications in the paper by Bortoloni and Cermelli (2004):
- the elastic behaviour is neglected
- the shear stress is kept constant.
- only one slip system is activated.
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Sanda Cleja-Ţigoiu and Raisa Tichişan Non-local elasto-viscoplastic models with dislocations



Introduction
Constitutive framework

Influence of the dislocation densities on elasto-plastic behaviour

References

Bortoloni L., Cermelli, P. Journal of Elasticity 76 (2004).

Cermelli, P., Gurtin M. E. Int. J. Solids Struc. 39 (2002).

Gurtin M. E., Needleman A. Int. J. Solids Struc. 53 (2005).

S. C-T Eur. J. Mech., A/Solids 15 (1996).

S. C-T Int. J. Plast. (2001)

S. C-T, Soós, E. Appl.Mech.Rev. 43 (1990).

S. C-T Int. J. Engng. Sc. 28 (1990) 171-191, 273-284.
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Elastic response

Stress measures: T− Cauchy
S− first Piola-Kirchhoff in ref. config.
Π− second Piola-Kirchhoff in relax. config.

T = detFe(Fe)−1Π(Fe)−T ,
S(Fp)T = (detFp)FeΠ

with �̂ detFe = �̃, �̃(detFp) = �̂0

(4)

�̃, �̂ �̃0− mass densities.

elastic type constitutive equation (if ∃ the potential '. )

Π = �̃∂'(Ee)
∂Ee , Ee = 1

2 (FeTFe − I) relax. config.

T = �̂Fe ∂'(Ee)
∂Ee (Fe)T def. config.

S = �̂0 Fe ∂'(Ee)

∂Ee
(Fp)−T , ref. config.

(5)
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linear momentum balance equation

divT = 0 in �(ℬ, t)

divS = 0 in ℬ
(6)

when the boby forces are neglected.

angular momentum balance equation

T = TT ⇐⇒ FST = SFT (7)
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Rate of plastic distortion

evolution equation for the plastic distortion

Ḟp(Fp)−1 =
N∑
�=1

��s̄� ⊗ m̄� (8)

with N- the number of the slip-systems,
(s̄�, m̄�) the �− slip system,
m̄�− normal to the slip plane, s̄�− and s̄� ⋅ m̄� = 0.
�� = ̇�− slip velocity
�− plastic shear on �− slip system.

(s̄�, m̄�) of the �− slip system are considered to be fixed with
respect to the reference configuration (see Mandel (1971) and
Teodosiu (1976))
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Ḟp(Fp)−1 =
N∑
�=1

��s̄� ⊗ m̄� (8)

with N- the number of the slip-systems,
(s̄�, m̄�) the �− slip system,
m̄�− normal to the slip plane, s̄�− and s̄� ⋅ m̄� = 0.
�� = ̇�− slip velocity
�− plastic shear on �− slip system.

(s̄�, m̄�) of the �− slip system are considered to be fixed with
respect to the reference configuration (see Mandel (1971) and
Teodosiu (1976))
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viscoplastic flow

is described by:

̇� = ̇0

∣∣∣∣����
∣∣∣∣nsgn��H (ℱ�) , �� ≡ ̇� ∀� = 1, . . . ,N,

(9)
H (ℱ�) is the Heaviside function composed with

the activation function ℱ�

ℱ� := ∣��∣ − �� (10)

��− resolved shear stress
��− yield modulus (critical shear stress).

via the Schmid’s law

∣��∣ ≥ �� ⇔ ℱ� := ∣��∣ − �� ≥ 0 (11)
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resolved shear stress

is defined in terms of T or S

�� :=
T

�̂
m� ⋅ s�, s� = Fe s̄�, m� = (Fe)−T s̄�,

�� =
1

�̂0

(
S(Fp)T m̄�

)
⋅ Fe s̄�.

(12)

hardening law is expressed either in terms of the dislocation
densities, Cermelli and Bortoloni (2004):

�� = ��
(
��
)
, � = 1, . . . ,N. (13)

or by certain evolution equation, Teodosiu and Raphanel
(1993)

�̇� =
N∑
�=1

h��
∣∣∣̇�∣∣∣ (14)

with h�� the hardening matrix.Sanda Cleja-Ţigoiu and Raisa Tichişan Non-local elasto-viscoplastic models with dislocations
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non-local evolution equation

for the dislocation densities considered by Bortoloni and
Cermelli (2004)

�̇� = D ∣��∣
(

kΔ�� − ∂ T

∂��

)
, � = 1, . . . ,N (15)

where
 T =  T

(
��
)
, � = 1, . . . ,N (16)

is a dislocation energy, D are k constant.

boundary conditions

k
∂��

∂n
= i�

(
��
)

pe ∂Bp (t) (17)
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Simple shear in stress controlled test, for only one slip system
Elastic solution

General problem

F, �(i .e.Fp), ��, for � = 1, . . . ,N defined on B × [0,T ),

equilibrium equation divS = 0

elastic type constitutive equation

S = F(Fp)−1
[

1
2�tr((Fp)−TFTF(Fp)−1 − I) I+

+�
(
(Fp)−TFTF(Fp)−1 − I

)
(Fp)−T

(18)

Evolution equation for plastic distortion

Ḟp =

[
N∑
�=1

∣∣∣∣∣S(Fp)T m̄� ⋅ F(Fp)−1s̄�

��(��)

∣∣∣∣∣
n

H (ℱ�) sgn(��)̄s� ⊗ m̄�

]
Fp

Evolution equations for the dislocation densities

�̇� = D
∣∣∣S(Fp)T m̄�⋅F(Fp)−1s̄�

��(��)

∣∣∣n H (ℱ�)
(

kΔ�� − ∂ T
∂��

)
, � = 1, . . . ,N (19)
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Simple shear in stress controlled test, for only one slip system
Elastic solution

Boundary conditions

Sn = t̄0 on Γ0
1

u = ū on Γ0
2

k ∂�
�

∂n = i�(��) on ∂Bp(t)

(20)

Initial conditions

�(0) = 0 ��(0) = ��0 � = 1, . . . ,N ⇐⇒ Fp(0) = I
(21)
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Simple shear in stress controlled test, for only one slip system
Elastic solution

Statement of the problem

domain occupied by the body is a layer B

B = {(x , y , z) : 0 ≤ z ≤ L} (22)
Sanda Cleja-Ţigoiu and Raisa Tichişan Non-local elasto-viscoplastic models with dislocations
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Simple shear in stress controlled test, for only one slip system
Elastic solution

Only one slip system (̄s ≡ i, m̄ ≡ k,

plastic distortion

Fp = I + s̄⊗ m̄, ̇ = � (23)

Problem: For a given homogeneous shear stress state,

S = S13(t) (i⊗ k + k⊗ i) with S13 : [t0,T ) −→ R≥0

find the unknowns

F = F (z , t) , � = �(z , t) si  = (z , t), defined on B × [t0,T )

Elastic type constutive equation

S13(t) (i⊗ k + k⊗ i) =

= F(I + s⊗m)−1

[
1

2
�tr((I + s⊗m)−TFTF(I + s⊗m)−1 − I)I+

+�
(

(I + s⊗m)−TFTF(I + s⊗m)−1 − I
)]

(I + s⊗m)−T
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Simple shear in stress controlled test, for only one slip system
Elastic solution

Evolution equation for 

̇ =

∣∣∣∣S13(t)F11

� (�)

∣∣∣∣nsgn (S13(t)F11) H(∣ � ∣ −�(�)) (24)

Evolution equation for the dislocation density

�̇ = D

∣∣∣∣S13(t)F11

� (�)

∣∣∣∣n (kΔ�− ∂ T

∂�

)
H(∣ � ∣ −�(�)) (25)

Activation condition defined in terms of

∣ � ∣ −�(�) ≡ ∣S13(t)F11∣ − � (�) . (26)

Initial condition

 (z , 0) = 0, � (z , 0) = �0 (z) (27)

boundary conditions

∂�

∂z
(0, t) =

∂�

∂z
(L, t) = 0 (28)
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Simple shear in stress controlled test, for only one slip system
Elastic solution

liniar elastic response

S = F(Fp)−1 (�tr(Ee)I + 2�Ee) (Fp)−T . (29)

Solve the problem for

Fp(t) = I(i .e.(t) = 0), �(t) = �(0) on certain time interval [0, t0).
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Simple shear in stress controlled test, for only one slip system
Elastic solution

Theorem

Under the hypotheses detF > 0 and F(0) = I, the elastic solution
has the form

F =

⎛⎝F11 F12 F13

0 F22 0
F13 F32 F11

⎞⎠ (30)

with

F22 =
√

F 2
11 + 3F 2

13

F11 =

√
S13

2�F13
+ F 2

13, if F13 ∕= 0,

(31)

and F13 = x solution of the equation

F 3
13 −

(3�+ 2�)

8 (�+ �)
F13 + S13

(3�+ 2�)

16� (�+ �)
= 0 (32)
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Simple shear in stress controlled test, for only one slip system
Elastic solution

Theorem

Solution of the equation for x = F13

x3 + Ax + B = 0

withA = −(3�+ 2�)

8 (�+ �)
, B = S13

(3�+ 2�)

16� (�+ �)
≡ S13

2�
A

(33)

are given under the form

x1 = −a− b

x2 =
a+b+

√
−3(a−b)2

2 , x3 =
a+b−

√
−3(a−b)2

2

(34)

where

b =
3

√
B −
√

Δt

2
, a = − A

3
3

√
B +
√

Δt

2

(35)
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Simple shear in stress controlled test, for only one slip system
Elastic solution

The solutions of the algebraic equation for F13 can be
characterized through the signum of the expression

Δt = B2 + 4

(
A

3

)3

≡
{(S13

2�

)2 − 2(3�+ 2�)

27(�+ �)

}[ 3�+ 2�

16(�+ �)

]2 (36)

Δt ≤ 0 ⇐⇒ S13 ≤ �
√

2

27

3�+ 2�

�+ �

⇐⇒ three real solutions exist, but either all are diffrent or two of them are identical

Δt > 0 ⇐⇒ S13 > �

√
2

27

3�+ 2�

�+ �

⇐⇒ only one real and two complex cojugated solutions exist
(37)
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Simple shear in stress controlled test, for only one slip system
Elastic solution

Elastic solution
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The three possible elastic solutions, for shear component of
deformation F13
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Simple shear in stress controlled test, for only one slip system
Elastic solution

Elastic solution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0
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0.4

0.6

0.8

1
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F13
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The non-zero components of the elstic solution
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Simple shear in stress controlled test, for only one slip system
Elastic solution

Conclusions

To solve the general problem:

1 First we solve the elastic solution in order to determine the
critical stress state at which the activation criterion is
reached, see the detail in 2.2.

2 Second we solve the sistem of equations, starting from the
initial conditions that correspond to the critical stress state
reached from the elastic solutions.
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reached from the elastic solutions.
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Conclusions

1. Graphics representations

for the plastic shear ,

the dislocation densities �, and
the non-vanishing components of the deformtion gradients,
F13,F31,F11 = F33,F22

have been ploted in a spatial representation, as functions of the
time t and the position z of the material points in the layer.

2. To develope a finite element description of the large
deformation of a polycrystalline body
(following Teodosiu, Raphanel -1993, Simo, Hughes-2000)
for non-local models
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Non-zero components of the deformation gradient
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Sanda Cleja-Ţigoiu and Raisa Tichişan Non-local elasto-viscoplastic models with dislocations



Introduction
Constitutive framework

Influence of the dislocation densities on elasto-plastic behaviour

Simple shear in stress controlled test, for only one slip system
Elastic solution

Non-zero components of the deformation gradient F(t, z)

0

0.5

1

1.5

2

0

0.02

0.04

0.06

0.08
0.999

0.9995

1

1.0005

1.001

1.0015

1.002

zt

F
33

F33− component of the deformation gradient
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Non-zero components of the deformation gradient for
z = 0.1205
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Non-zero components of the elastic distorsion for
z = 0.1205
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